Extracellular Matrix Remodeling and Metalloproteinase Involvement during Intestine Regeneration in the Sea Cucumber Holothuria glaberrima

José L. Quiñones, Rey Rosa, Dorcas L. Ruiz, and José E. García-Arrarás

Department of Biology, University of Puerto Rico, Rio Piedras, Puerto Rico 00931

The sea cucumber, Holothuria glaberrima, has the capacity to regenerate its internal organs. Intestinal regeneration is accomplished by the thickening of the mesenteric border and the invasion of this thickening by mucosal epithelium from the esophagus and the cloaca. Extracellular matrix (ECM) remodeling has been associated with morphogenetic events during embryonic development and regeneration. We have used immunohistochemical techniques against ECM components to show that differential changes occur in the ECM during early regeneration. Labeling of fibrous collagenous components and muscle-related laminin disappear from the regenerating intestine and mesentery, while fibronectin labeling and 4G7 (an echinoderm ECM component) are continuously present. Western blots confirm a decrease in fibrous collagen content during the first 2 weeks of regeneration. We have also identified five 1,10-phenanthroline-sensitive bands in collagen gelatin zymographs. The gelatinolytic activities of these bands are enhanced during early stages of regeneration, suggesting that the metalloprotease activity is associated with ECM remodeling. Inhibition of MMPs in vivo with 1,10-phenanthroline, p-aminobenzoyl-Gly-Pro-D-Leu-D-Ala hydroxamate or N-CBZ-Pro-Leu-Gly hydroxamate produces a reversible inhibition of intestinal regeneration and ECM remodeling. Our results show that significant changes in ECM content occur during intestine regeneration in the sea cucumber and that the onset of these changes is correlated to the proteolytic activities of MMPs. © 2002 Elsevier Science (USA)

Key Words: echinoderm; extracellular matrix remodeling; ECM; epithelial tubular outgrowth; fibrosis; holothuroid; intestine regeneration; metalloproteases; metalloprotease inhibitors; morphogenesis; organogenesis; 1,10-phenanthroline; zymograph.

INTRODUCTION

Extracellular matrix (ECM) molecules are known to participate in the regulation of organ development and in the differentiation of cells (Adams and Watt, 1993; Thesleff et al., 1995; Ashkenas et al., 1996). In animals, changes in ECM composition and regulated matrix degradation are common events during embryogenesis and tissue regeneration. ECM remodeling associated with organ morphogenesis and tissue regeneration has been reported in mammalian nephrogenesis (Tanney et al., 1998; Wallner et al., 1998), mice and rat mammary gland development (Talhouk et al., 1991; Witty et al., 1995; Uria and Werb, 1998; Schedin et al., 2000), Xenopus organ development and wound healing (Patterson et al., 1995; Damjanovskiy et al., 1999, 2000; Carinato et al., 2000), newt limb regeneration (Yang and Bryant, 1994; Miyazaki et al., 1996; Nace and Tassava, 1995; Gassner and Tassava, 1997; Christensen and Tassava, 2000), rat liver regeneration (Kim et al., 1997), gonadal formation in Caenorhabditis elegans (Belloc and Kimble, 1999), morphogenesis and head regeneration in Hydra (Yan et al., 2000a,b; Leontovich et al., 2000), and sea urchin embryogenesis (Wessel and McClay, 1987; Roe et al., 1989; Ramachandran et al., 1993; Quigley et al., 1993; Vafa et al., 1995, 1996; Robinson, 1997, Ingersoll and Wilt, 1998; Mayne and Robinson, 1996; Wardle et al., 1999).

Skin wound healing provides one of the best documented examples of ECM remodeling involvement in the regeneration of tissues (Rooney and Kumar, 1993; Martin, 1997). During wound healing and regeneration of the vertebrate skin, the ECM is degraded (mostly collagen), and a tempo-
The matrix metalloproteases (MMPs) that degrade ECM components seem to be crucial to the onset of the matrix changes that occur during ECM remodeling. MMPs, including the collagenases, gelatinases/collagenase, and stromelysins, have been associated with morphoregulatory roles and shaping of organs during embryogenesis and regeneration (Matrisian, 1990, 1992; Massova et al., 1998; Nagase and Woessner, 1999). These proteases degrade at least one component of the ECM, they contain a zinc ion in their catalytic site and can be inhibited by chelating agents, tissue inhibitors of metalloproteinases (TIMPs), and synthetic peptides. During skin wound healing, at least three MMPs are up-regulated (Martin, 1997), and during amphibian limb regeneration, an increase in gelatinolytic activity in zymographs has been reported (Yang and Bryant, 1994; Miyazaki et al., 1996). MMPs have also been detected in sea urchins, where they seem to play a significant role in development (Ghiglione et al., 1994; Vafa and Nishioka, 1995; Lhomond et al., 1996; Mayne and Robinson, 1996; Quigley et al., 1993; Robinson, 1997; Ingersoll and Witt, 1998). In gelatin zymographs, bands of gelatinolytic activities were detected in Arbacia punctulata, Strongylocentrotus purpuratus, and Lytechinus pictus during development, and these activities were found to increase during gastrulation (Quigley et al., 1993; Vafa et al., 1996).

Echinodermata exhibit a high capacity to regenerate their tissues and organs (Hyman, 1955). This capacity is best manifested in the members of the class Holothuroidea (Moshi, 1956; Bai, 1971; García-Arrarás et al., 1998). When holothurians are exposed to adverse stimuli, they respond by ejecting most of their internal organs. The ejected viscera are then regenerated. Our laboratory has developed the use of the sea cucumber Holothuria glaberrima as an excellent biological system for studying organogenesis in an adult organism. The intestinal system is the first to regenerate from a thickening that forms at the edges of the torn mesentery (García-Arrarás et al., 1998). Here, we study the epithelial and connective tissue interaction, in particular the matrix remodeling, during intestine regeneration.

To determine whether changes in ECM composition occur during intestine regeneration, we have used immunohistochemical analysis for ECM molecules, such as collagen, fibronectin, laminin, and other interstitial fiber, and basal lamina components at different stages of regeneration. ECM molecular changes were analyzed, focusing on the collagen content and on the activities and possible involvement of MMPs. Our results provide important insights to the understanding of the role of ECM remodeling and tissue interactions during the regeneration of a complex organ.
material, which is pepsin resistant, was used to immunize three Balb/c mice.

Collagen extractions for Western blots were made from noneviscerated intestines (d-0) and intestinal tissues of d-7 to d-28 regenerating animals as described above. The pellet was washed, resuspended, and centrifuged three times in PBS and then resuspended in Laemni sample buffer, 5 M urea, 20 μM/ml of 2-mercaptoethanol (in the same original volume of homogenate supernatant), and incubated at 42°C for 1 h.

Production of Antibodies against Intestinal Fibrous Collagen

Fifty microliters of an emulsion (equal volumes of Titer Max and the extracted collagen solution) were injected intraperitoneally in each mouse. After 30 days, the serum was extracted and utilized as a polyclonal antibody source for immunohistochemistry. The sera of the three mice (fCol/Clo, fCol/Cbz, and fCol/Pos) showed similar results; a strong labeling was found against the extractable collagen solution (except for fCol/Pos). For immunohistochemical assays of holothuroid intestine, the sera were used for immunohistochemical assays of holothuroid intestine. Cells from wells that labeled interstitial fibrous material and basal lamina were subcloned twice by limiting dilutions. From these, we selected the Hg-fCOL clone. Preimmune serum was extracted from mice and used in histological sections as a control.

Western Blots

Collagen was extracted from tissues of noneviscerated animals (d-0) and regenerating d-7 to d-28 animals. From each sample, the equivalent volume to 30 μg of the soluble protein fraction was utilized in 7.5% polyacrylamide gel electrophoresis. Biotinylated broad range standards with avidin–horseradish peroxidase were used for molecular weight determination (Bio-Rad). After separation, the gel was incubated with the same buffer containing the MMP inhibitor 1,10-phenanthroline (2 mM). Gels were stained with Coomassie blue to visualize translucent bands indicating gelatinolytic activities. Stained gels were scanned (GS-700 Bio-Rad) and densitometric analysis was done with Quantity One software (Bio-Rad). Optical densitometric curves were prepared from zymographies where we used different extract dilutions. Gels were analyzed by using the linear portion of the intensity/density curve.

Inhibition of MMPs during Regeneration

H. glaberrima specimens were eviscerated and placed in aquaria. Animals were injected in the coelomic cavity with 0.5 ml of 20 mM 1,10-phenanthroline/0.1 M PBS (pH 7.4) for an estimated final coelomic concentration of 2 mM. Animals were injected three times during the first week of regeneration (1 h after evisceration, d-2, and d-4), and dissected on d-7 for histological analysis. Control animals were injected with 0.1 M PBS (pH 7.4). Similar experiments were performed with two additional MMP inhibitors, N-CBZ-Pro-Leu-Gly hydroxamate and p-aminobenzoyl Gly-Pro-D-Leu-D-Ala hydroxamate (Sigma). The former was injected at an estimated coelomic concentration of 0.05 mM (0.5 ml of 0.5 mM per injection) while the latter was injected at an estimated coelomic concentration of 0.5 mM (0.1 ml of 5 mM per injection). Animals were injected on days 1, 3, and 5 of regeneration and dissected on d-7.

A second group of five experimental and five control animals received the 0.5 ml of 20 mM 1,10-phenanthroline treatment described above and were left without further injections until dissected at d-14. The purpose of this experiment was to observe whether phenanthroline-treated animals resume regenerative events after withdrawal of the drug. MMP inhibition was evaluated by measurements of the regenerating structure size and immunohistochemistry against fibrous collagen.

Statistical Analysis

Statistical analyses using Student’s t tests and ANOVA were made in Excel software program from Microsoft Office. Particular details of sample measurements used for the analysis are described in the corresponding figures.
RESULTS

Intestinal Regeneration

As previously described (García-Arraras et al., 1998, 1999), evisceration can be experimentally induced by 0.35 M KCl injection into the coelomic cavity and a new intestine is regenerated in 3–4 weeks. Animals eviscerate most of their internal organs, including small and large intestine, the hemal system, and the left respiratory tree. Evisceration causes the intestine to detach from the mesenteries and to rupture at the esophageal–intestinal junction in the anterior end and at the posterior intestinal–cloaca junction. Figure 1 summarizes our findings and those reported previously from our group, necessary for the understanding of the ECM results reported in this article. H. glaberrima has a small and large intestine, similar in tissue structure to the vertebrate intestine. It has a coelomic epithelial lining, two muscular layers (circular and longitudinal), an inner connective tissue, and a pseudostratified mucosal epithelium. Intestinal regeneration is mainly accomplished by a thickening at the edge of the torn mesentery that includes an increase in cell density and the

FIG. 1. The sea cucumber Holothuria glaberrima has the capacity to regenerate its internal organs following the process of evisceration. (A) Evisceration can be experimentally induced by KCl injection into the coelomic cavity. During evisceration, the intestine is detached from the esophagus, the mesenteries, and expelled through the cloaca. (B) Noneviscerated animal showing internal organs. (C) Eviscerated animal with dorsal mesentery (DM), ventral mesentery (VM), and lateral mesentery (LM). Thickening of ventral mesenteric edge initiating intestine regeneration process. (D) Diagram of longitudinal sections of the esophagus showing the mucosal epithelium tubular outgrowth and transverse sections of the mesenteric edge thickening during days 3, 7, and 12 of intestine regeneration. The tubular outgrowth of the mucosal epithelium from the esophagus invades the mesenteric edge thickening and forms the new intestinal lumen. A similar outgrowth forms in the cloaca. Abbreviations: ce, coelomic epithelium; ct, connective tissue; mu, mucosal epithelium.

FIG. 2. Immunohistochemistry for ECM components with the antibodies 4G7, anti-fibronectin (anti-Fn), and anti-laminin (anti-Ln) in transverse sections of the large intestine (noneviscerated) and the regenerating intestine (d-3, d-7, and d-14). (A–D) In noneviscerated animals, 4G7 labels interstitial fibers in the dense connective tissue and the basal lamina below the mucosal epithelium and muscle layers. In d-3 and d-7, the labeling can be observed in the mesentery and mesenteric thickening below the coelomic epithelium and interstitial fibers. The 4G7 sharply delineates the basal lamina of the new mucosal epithelium in the mesenteric edge by d-14. (E–H) In noneviscerated animals, anti-Fn labels irregular fibers associated to the connective tissue and the basal lamina of the mucosal epithelium. In the regenerating structure, anti-Fn labeling is prominent in the mesentery where its expression seems to be increased. (I–L) Anti-Ln only labels muscle cells in noneviscerated animals. In the regenerating tissues, anti-Ln labeling is dramatically reduced in the mesenteric edge thickenings and throughout the mesentery. Anti-Ln-labeled muscle cells become prominent at d-14 after lumen formation. Inserts are the same histological sections as seen by phase contrast. Abbreviations: ce, coelomic epithelium; ct, connective tissue; me, mesentery; ml, muscle layers; mu, mucosal epithelium. Scale bars, 100 μm.
invasion of the mesenteric thickening by two tubular outgrowths of mucosal epithelia from the esophagus and the cloaca that form the new intestinal lumen.

Immunohistochemistry against ECM Components

To observe possible changes in ECM composition and organization in the regenerating tissues, we used immuno-histochemistry with four different antibodies against ECM molecules: 4G7, anti-fibronectin, anti-laminin, and Hg-fCOL. Initial experiments were aimed at determining the presence and distribution of these ECM markers in the noneviscerated intestine of *H. glaberrima*. Once the normal expression of these ECM components was determined, these antibodies were used in histological sections of regenerating tissues. Particular attention was focused on the mesenteric edge thickening at the junction with the esophagus, where the invasion of mucosal epithelium takes place.

4G7. In the intestine of noneviscerated animals, 4G7 provides a clear and distinctive labeling of two laminae: one under the mucosal epithelium, and the other under the muscle layers. In addition, 4G7 labels interstitial fibers within the inner connective tissue that protrude from both basal laminae, being most abundant and longer in the basal lamina under the muscle layers (Fig. 2A). In the mesentery, 4G7 labels a lamina under the muscle layers and dispersed interstitial fibers in the connective tissue (data not shown).

In the d-7 regenerating intestine, 4G7 labels the basal lamina below the coelomic epithelium and fibers in the new connective tissue. Rather than the observed fibrillar pattern of 4G7 labeling in the connective tissue of the noneviscerated intestine, the labeling of this molecule is observed as short fibers and dispersed granules in the regenerating intestine. By the second week, the lamina is now observed under the newly formed muscle layers and its labeling by 4G7 is now similar to that observed in noneviscerated animals (Figs. 2B-2D). In all regenerative stages, 4G7 sharply delineates the basal lamina of the new mucosal epithelium in the regenerating intestine, labeling a continuous lamina that extends from the remaining esophageal tissue to the tubular outgrowth invading the mesenteric thickening (Figs. 2D and 2B). In the mesentery of regenerating animals, the 4G7 labeling is present during the whole regeneration period in the basal lamina similar to noneviscerated animals (see Fig. 2B).

Anti-fibronectin. In the intestine of noneviscerated animals, anti-fibronectin (a-Fn) labels a meshwork of interstitial fibers in the inner connective tissue adjacent to the muscle layers (Fig. 2E). These fibers are thinner and form a more compact network than those labeled by 4G7. a-Fn also labels the basal lamina under the mucosal epithelium and, in the mesentery, a-Fn labels a thin fibrillar meshwork within the connective tissue.

In the regenerating animals, a-Fn can be found at all regenerative stages, however there are changes in its expression pattern. In d-7 animals, a-Fn labeling is uniformly dispersed in a diffuse and granular form in the mesenteric thickening. However, a-Fn expression is not observed in the basal lamina of the new mucosal epithelium during the first weeks of regeneration. In contrast, during the first 2 weeks, the a-Fn labeling seems to be increased in the mesentery near the regenerating structure (Figs. 2F and 2H). However, here also a-Fn labeling changes to a diffuse nonfibrillar labeling. By the third week, there is a prominent increase of a-Fn labeling in the inner connective tissue of the regenerating intestine forming a fibrillar matrix pattern that appears to be even more abundant than in noneviscerated animals (data not shown). This labeling is concentrated at two locations: below the forming muscle layers and adjacent to the mucosal epithelium.

Anti-laminin. In noneviscerated and regenerating animals, anti-laminin (a-Ln) only labels the enteric and mesenteric muscle cells (Figs. 2I-2L). In d-3 regenerating animals, there is no labeling within the mesenteric thickening. The labeling also disappears from the mesentery, in a gradient from the mesenteric edge thickening and moves towards the body wall. During the second week of regeneration, labeling can be detected in the regenerating muscle layer below the coelomic epithelium. In the esophagus, the a-Ln labeling also disappears in a gradient from the regenerating area towards the mouth. The disappearance of a-Ln labeling coincides with the disorganization of the muscle layers in the mesentery and esophagus during the first week of regeneration and its reappearance coincides with the reformation of the muscle layers.

Anti-fibrous collagen. Sera from the three immunized mice showed similar immunoreactivity against intestinal fibrous interstitial matrix and basal lamina, while their preimmune serum was unreactive. From one of these mice the monoclonal antibody Hg-fCOL was produced.

The observed labeling pattern of the anti-collagen polyclonal and monoclonal antibodies was similar. Nonetheless, the results presented here are those obtained with the monoclonal antibody Hg-fCOL. In noneviscerated animals, Hg-fCOL labels a large amount of interstitial fibers as well as the basal lamina of the mucosal epithelium (Fig. 3A). The fibers are found in the inner connective tissue, with bundles of interstitial fibers running parallel to the adjacent circular muscle layer. Other fiber bundles protrude in a perpendicular pattern to the muscle layers and stretch toward the mucosal epithelium. Therefore, the collagen fiber network is heterogeneously expressed in the intestine system with a large fibrillar component within an area next to the muscle layer and a smaller fibrillar component near the mucosal epithelium. The basal lamina of the mucosal epithelium is also labeled, with short fibers running toward the connective tissue. A network of fibers is also labeled within the connective tissue of the mesentery of noneviscerated animals (not shown).

Initially, fibrous collagen fibers are present in the mesentery and mesenteric border up to d-3 (Fig. 3B). Then, a striking disappearance of collagen labeling is observed in d-7 animals (Fig. 3C). The collagen fibers are scarce or...
FIG. 3. Immunohistochemical labeling of anti-fibrous collagen by monoclonal Hg-fCOL in transverse sections of noneviscerated and regenerating intestine. (A) In large intestine of noneviscerated animals, Hg-fCOL labels collagenous interstitial fibers in the connective tissue below muscle layers, delineates the basal lamina of the mucosal epithelium, and labels fibers in the connective tissue of the mesentery. (B) At d-3, the collagen fibers are still observed in the mesentery and mesenteric edge. (C) At d-7, labeling is dramatically reduced in the regenerating intestine and in the mesentery. (D) At d-14, there is no fiber labeling in the connective tissue of the regenerating structure or in the mesentery, nor in the basal lamina of the mucosal epithelium. (E) Hg-fCOL interstitial labeling begins to appear after lumen formation as can be seen in a d-28 animal. (F) By d-65 after evisceration, the labeling is similar to that of noneviscerated intestine. Inserts are the same histological sections as seen by phase contrast visible light. Abbreviations: ce, coelomic epithelium; ct, connective tissue; me, mesentery; mu, mucosal epithelium; ml, muscle layers; bl, basal lamina. Scale bars, 100 μm.
absent in the mesenteric thickening and throughout the mesentery segment adjacent to the regenerating structure. As one moves up the mesentery toward the body wall, the labeled fibers appear in a gradient with the largest concentration being at the most distal point from the regenerating structure. By the second week of regeneration, collagen fibers are absent in the new connective tissue and the basal lamina of the new mucosal epithelium, and have mostly disappeared from the mesentery (Fig. 3D). Collagen fibers begin their reappearance in the mesentery during the third week in a gradient that runs from the body wall toward the regenerating intestine. By the fourth week, fibers are found within the regenerating intestine, in the connective tissue below the muscle layers, but these are not as abundant as in noneviscerated intestine. At this stage, the basal lamina of the mucosal epithelium is still not labeled (Fig. 3E). In animals at d-65, there is an abundant increase of collagen interstitial fibers in the connective tissue of the regenerated organ and the mesentery, similar to what is found in noneviscerated intestines (Fig. 3F). At this stage, collagen labeling in the basal lamina of the mucosal epithelium has reappeared in some animals.

A similar disappearance of collagen labeling can be found in the esophagus of regenerating animals; by the first week, the presence of the interstitial fibers, as well as the labeling of the basal lamina disappears in a gradient that runs from the regenerating area towards the mouth. Labeling is also absent in the basal lamina of the mucosal epithelium tubular outgrowth that is beginning to invade the mesenteric thickening. By the third week, collagen fibers begin to reappear and increase in concentration near the regenerating area, which already has a newly formed lumen.

Western Blots to Determine Fibrous Collagen Content

Pro-collagens and collagens can be identified on gels as bands that disappear when samples are treated with purified bacterial collagenase prior to electrophoresis (Haralson and Hassell, 1995). Therefore, our initial Western blots were made to determine that the molecule labeled by Hg-fCOL is indeed a substrate for a bacterial collagenase. In homogenates of noneviscerated mesentery (d-0), the monoclonal antibody Hg-fCOL labels a 137-kDa band and duplex bands of 47 and 43 kDa. When the extract was pretreated with bacterial collagenase, the density of the 137-kDa band is significantly decreased, while the density of the duplex bands is increased (Figs. 4A and 4B).

Western blots were also made to quantify the changes in fibrous collagen content during regeneration and correlate these changes with the immunohistochemical data. Homogenates from noneviscerated mesentery (d-0) and from mesentery with the regenerating structure (d-7, d-14, d-21, and d-28) were used. These results show that the overall fibrous collagen content in the regenerating tissues decreases significantly during the first 2 weeks of regeneration as compared with noneviscerated (d-0) mesenteric tissues. Densitometric analysis of horizontal scanned bands of Western blots shows that, by the second week of regeneration, the 137-kDa band decreased fivefold and the duplex bands of 47 and 43 kDa decreased to a lesser extent.
bands (47 and 43 kDa) decreased near fourfold when compared with noneviscerated mesentery (Figs. 5A and 5B). After the fourth week of regeneration, the collagen content of these tissues is slightly increased as compared with d-14. Thus, the observed decrease of fibrous collagen content during regeneration in Western blot analysis parallels the decrease in fibrous collagen observed in histological sections with immunohistochemistry.

Zymography for MMP Activities

Since ECM degradation is an initial step of tissue repair in vertebrates, we made collagen–gelatin and casein gel zymographs to detect MMP proteolytic activities in intestinal tissue homogenates. In collagen gel zymography of mesenteric tissue samples from noneviscerated animals (d-0), we have identified at least four consistent gelatinolytic bands corresponding to the 59, 51, 45, and 43 kDa (Fig. 6A). All these bands are sensitive to the MMP inhibitor 1,10-phenanthroline showing that they are zinc-dependent metalloproteinases (Fig. 6B). These bands are not inhibited by other proteases inhibitors, such as pepstatin-A and benzamidine (data not shown). In addition, no proteolytic activity
was detected in casein gel zymographs of noneviscerated or regenerating tissues (data not shown).

Collagen–gelatin gel zymographs were made from homogenates of noneviscerated (d-0) mesenteries and regenerating tissues (d-7 and d-14) to determine relative changes in activities during regeneration. Densitometric analysis revealed an increase in the activity of the four bands during the first 2 weeks of regeneration when compared with noneviscerated mesenteries (d-0) (Fig. 6C). This increase parallels the decrease in fibrous collagen matrix observed with immunohistochemistry and Western blots. After the second week of regeneration, other bands with proteolytic activity appeared. However, these were not phenanthroline-sensitive and may be digestive enzymes of the new mucosal epithelium, since they are also observed in noneviscerated intestinal homogenates (data not shown).

Inhibition of MMPs during the Onset of the First Stages of Intestine Regeneration

The enhanced gelatinolytic activity observed during early regenerative stages suggest that MMPs may play a role in the observed ECM changes. To determine whether MMP activities are critical for the onset of the regenerative events, we performed inhibition experiments in regenerating animals. Intracoelomic injections with 1,10-phenanthroline were done in experimental animals and compared with a control group injected with 0.1 M PBS (pH 7.4). Phenanthroline-treated animals were found to be delayed in their regeneration program. This delay was on the order of about 4–6 days and could be detected by impaired early regenerative events such as: a smaller size of the mesenteric thickening, a shorter mucosal epithelium outgrowth from the esophagus, and reduced fibrous collagen disappearance. Measurements of the mesenteric thickenings in the histological sections show that phenanthroline-treated animals have a regenerating structure ten times smaller than PBS-treated animals (Fig. 7). Also, 1 week following evisceration, PBS-treated animals had the mucosal tubular outgrowth already extending from the esophagus into the mesenteric thickening. This was not observed in phenanthroline-treated animals where the tubular outgrowth is still in or near the esophagus area. Finally, histological observations at d-7 show that, in PBS-treated animals, the Hg-fCOL labeling in the mesenteries and regenerating structures has mostly disappeared, while in phenanthroline-treated animals, the collagen labeling is still present in the mesenteries and in the regenerating structure (not shown).

To exclude the possibility that the phenanthroline effects were due to toxic or lethal effects on the regenerating tissues, a group of phenanthroline-treated and PBS-treated animals were not dissected on day 7 but were left without further injections up to day 14. Histological sections of these animals showed that phenanthroline-treated animals, although with a lag in their regenerative stage, had indeed resumed regeneration (Fig. 8). Their regenerating structures were closer in size to those of a d-8 or d-10 animal instead of the d-14 size shown by PBS-treated animals. In the d-14 phenanthroline-treated animals, the invasion of the mucosal epithelium into the mesenteric thickenings proceeded forming the new intestinal lumen equivalent to d-8 or d-10 control animals. Also, the Hg-fCOL labeling of fibrous collagen in these experimental animals had disappeared from the mesenteries and regenerating structures as occurred in control animals.

Nevertheless, phenanthroline is a broad-range inhibitor that could be exerting an effect on regeneration processes other than those mediated by MMPs. To narrow the regeneration effect to the MMPs, we repeated the experiments but this time using specific MMP inhibitors. Two such inhibitors were used, the peptidyl hydroxamic acids: N-CBZ-Pro-Leu-Gly hydroxamate and p-aminobenzoyl Gly-Pro-D-Leu-D-Ala hydroxamate. Both are known to bind to the enzyme, causing a competitive inhibition and displacing the natural substrate from the enzyme active site. Both inhibitors caused effects similar to those observed after phenanthroline treatment, mainly, an inhibition of intestinal regeneration as viewed by a decrease in the size of the regenerating structure (Fig. 9) and reduced fibrous collagen disappearance as detected by immunohistochemistry (not shown). Nonetheless, the magnitude of the effect caused by the two inhibitors differed. N-CBZ-Pro-Leu-Gly hydroxamate caused a pronounced inhibition in the size of the regenerating structure to about 33% of the controls, while p-aminobenzoyl Gly-Pro-D-Leu-D-Ala hydroxamate caused only a small decrease in the size of the regenerating structure to about 71% of the controls.

DISCUSSION

ECM Labeling in the Intestine of Noneviscerated Holothuria glaberrima

We have identified four ECM components within the connective tissue of the holothuroid intestine and mesentery. Each component is recognized by a particular antibody and shows a unique pattern of labeling in terms of fiber characteristic, abundance, or localization. Thus, in terms of the goals of the present experiments, we expect to be labeling four different ECM components: fibrous collagen, fibronectin, laminin, and a yet unidentified echinoderm ECM component. However, at least three of these components are made up of a family of closely related molecules or isoforms, and therefore each antibody is probably labeling one or a subset of the members of the particular ECM molecule family. For example, in vertebrates, the fibronectin family contains at least eight splice variants, and laminins have at least nine genetically distinct subunits and several isoforms (Schwarzbauer, 1991, Kreis and Vale, 1994; Haralson and Hassell, 1995). Nevertheless, the expression pattern, the comparison to what is known of ECM molecules in other metazoans and the available information on the production of the antibodies themselves, provide im-
important information on the possible molecules identified by immunohistochemistry within the holothuroid intestine. Members of the fibronectin family are known to be temporally and spatially expressed during intestinal development in vertebrates. Fibronectin is initially detected as a linear band at the endodermal/mesenchymal interface during embryonic development, and in adults, is also localized in the muscle layers in narrow spaces between the muscle cells (Simon-Assmann, 1995; Kurisu et al., 1987). In non-eviscerated intestines of H. glaberrima, the α-Fn also labels the basal lamina of the mucosal epithelium, but instead of being present between the muscle cells, the α-Fn is abundantly present in a meshwork of interstitial fibers below the muscle layer in the connective tissue. Antibodies against human plasma fibronectin have also been used for studies on basal lamina ontogeny during early embryogenesis of the sea urchin Lytechinus variegatus (Wessel et al., 1984). In this case, fibronectin has also been associated with the basal lamina of the developing embryo (blastula to pluteus larva) and with the migrating primary mesenchyme.

In vertebrates, various laminin isoforms have been identified within the intestinal ECM (Simon-Assmann et al., 1995; Simo et al., 1991). Laminin-1 has been localized to the basal lamina of the mucosal epithelium and the muscle layers as well as to the connective tissue of the submucosa. Laminin-3 is solely localized on the muscle layers, and laminin-2 and -5 are only found in the basal lamina of the mucosal epithelium. The laminin antibody used in our studies is a polyclonal raised against laminin-1 from Engelbreth Holm mouse sarcoma. Nevertheless, in the holothuroid intestine, several key observations were made regarding the temporal and spatial expression of these molecules. For instance, FIG. 7 illustrates the effects of MMPs inhibitor, 1–10,phenanthroline, on early regenerative events. Histological observations of d-7 animals show that the mesenteric edge thickening in the PBS injected animals (A) has the characteristic size of a normal regenerating structure, while in phenanthroline-treated animals (B), it is significantly reduced in size. Measurements of the relative area of the thickenings show a 10-fold decrease in the mesenteric thickening size of phenanthroline-treated animals as compared with PBS controls (*, P < 0.01, n = 4). By d-14, even though no further injections were made, the size of the regenerating intestine of phenanthroline-treated animals still lagged behind that of PBS-treated animals. Abbreviations: me, mesentery; me-th, mesenteric thickening. Scale bars, 500 μm.
roid, it appears to be identifying a muscle-specific laminin isoform. It is obvious that further experimentation is necessary to define the laminin component of the holothuroid intestine.

The ECM component identified by 4G7 has not been characterized, but from the spatial and temporal localization, it appears to differ from the other labeled components. The monoclonal 4G7 was raised against sea urchin embryonic connective tissue and its spatial labeling pattern in *H. glaberrima* is similar in some aspects to that of anti-fibrous collagen. Nevertheless, the differences in the organization and temporal expression during regeneration show that this antibody labels a different type of interstitial fibers from those labeled by collagen antibodies.

In contrast to the unknown nature of the 4G7 labeling, the molecule recognized by the collagen anti-sera and monoclonal supernatants is a fibrous collagen. Two main characteristics of collagen molecules were used with salt fractionation steps to extract and isolate fibrous collagen to obtain the material for antibody production: (1) the post-translational covalent cross-linking between the subunits that makes these molecules highly insoluble, and (2) the triple helical subunits structure that confers resistance to gastric pepsin (Haralson and Hassell, 1995). Also, collagenase experiments show that the molecule is a substrate for bacterial collagenases. Previous studies have shown that fibrous collagen extracted from sea cucumber dermis and cuvierian tubules by pepsin digestion and a salt fractionation step (NaCl 1.2 M) has a similar amino acid composition to mammalian type I collagen (Bailey, 1984). In addition, the banding pattern observed in Western blots is similar to the holothuroid collagen identified as type I (Bailey, 1984). In the vertebrate intestine, the expression of type I and III fibrous collagen (protein and mRNA) is restricted to the submucosal connective tissue, collagen I being the most abundant (Sanberg et al., 1989, Simon-Assmann et al., 1995). In *H. glaberrima*, fibrous collagen labeling is also observed in the inner connective tissue between the mucosal epithelium and the muscle layers, and is not detected in the muscle layers. In contrast to vertebrate intestine, this molecule is also present in the basal lamina of the mucosal epithelium.

Changes in ECM Composition Reflects Matrix Remodeling during Intestine Regeneration

We have observed changes in ECM components during intestinal regeneration as compared with their expression...
and/or matrix interstitial molecules apparently disappear from the basal laminas, changes can vary depending on the ECM component: some pattern in noneviscerated intestine and mesentery. These FIG. 9. Intracoelomic injections of specific MMPs inhibitor delays early regenerative events. Measurements of the relative area of the thickenings show a decrease in the mesenteric thickening size of p-amino Gly-Pro-D-Leu-D-Ala hydroxamate- (A) and N-CBZ-Pro-Leu-Gly hydroxamate-treated (B) animals as compared with PBS controls (*, P < 0.05; (A) n = 8, (B) n = 6).

pattern in noneviscerated intestine and mesentery. These changes can vary depending on the ECM component: some molecules apparently disappear from the basal laminas and/or matrix interstitial fibers, and other molecules are present at all time showing slight changes in their expression pattern. Laminin and fibronectin are examples of molecules whose expression disappear, while fibronectin and 4G7 are the ones with continuous expression that undergoes slight changes.

The selective pattern of expression of the ECM molecules during regeneration is best exemplified by 4G7 and fibrous collagen. 4G7 labeling delineates the basal lamina of the coelomic epithelium in the regenerating structure and mesentery, as well as the luminal epithelium basal lamina, at all regenerative stages. This is important since it implies that a basal lamina structure is continuously present during the tubular epithelial outgrowth and the molecule labeled by 4G7 is continuously synthesized and accumulated in this growing structure during lumen formation. The same occurs with the basal lamina under the coelomic epithelium in the newly formed regenerating structure. In contrast, anti-fibrous collagen (Hg-TCOL) labeling disappears from the same location in the basal lamina and interstitial matrix during early regenerative stages, and its reappearance is temporarily delayed.

Fibronectins are high molecular weight glycoproteins found in many extracellular matrices in the interstitial matrix and basal lamina of epithelia. These molecules have binding sites for other extracellular molecules, such as a gelatin collagen and a heparan sulfate, which could mediate matrix–matrix or cell–matrix interactions (Kreis and Vale, 1994). It is possible that the observed fibronectin changes in the mesentery at early regenerative stages could be related to the disorganization of the collagen matrix. Thus, following the disappearance of collagen molecules, the observed fibrillar network of fibronectin becomes disorganized. Nevertheless, changes in the fibronectin content and fibrillar organization in the mesentery and regenerating intestine may play a role during regeneration, similar to the role it plays during other regenerative events such as the epithelial restitution in vertebrate wounded skin (Rooney and Kumar, 1993; Martin, 1997), in vitro intestine epithelial restitution (Goke et al., 1996), in vitro alveolar epithelial restitution (Garat et al., 1996), and newt limb regeneration (Nace and Tassava, 1995; Christensen and Tassava, 2000).

Fibronectins also have cell-binding sites that promote cell adhesion and are known to affect morphology, migration, and differentiation. In particular, the role of fibronectin during cell migration and development has been widely documented. Fibronectin has been shown to be involved in the migration of vertebrate neural crest cells (Bronner-Fraser, 1986, 1993), cortical neurons (Sheppard et al., 1991, 1995), and mesenchymal cells in sea urchins (Spiegel et al., 1983; Wessel et al., 1984). Cell migration via the mesentery into the mesenteric thickening has been proposed to occur during holothuroid regeneration (García-Arrarás et al., 1998). When the mesenteric edge increases in size, there is a concomitant increase in cell density within the inner connective tissue which is not due to proliferation. Thus, it is possible that these cells are migrating through the mesenteric connective tissue and that the ECM remodeling described here, particularly changes in fibronectin, may play an important role in this migration.

In vertebrate skin, during wound healing and restitution of tissues, the collagen matrix is degraded and a temporary matrix is formed, consisting primarily of hyaluronic acid, fibronectin and fibrin (Rooney and Kumar, 1993; Martin, 1997). After restitution of tissues, the hyaluronic acid is degraded, and the collagen matrix is resynthesized and accumulated. Collagen matrix remodeling also occurs during wound healing and restitution of tissues after induction of gastric ulcers (Pohle et al., 1997). In both skin and gastric wound healing, the reposition of fibrous collagen is initiated 3–4 days after the lesions have occurred (Rooney and Kumar, 1993; Pohle et al., 1997). Similarly, our results imply a disappearance of fibrous collagen within the ECM in the early stages of regeneration showing a dramatic change in fibrous collagen expression as documented by immunohistochemistry and Western blots. In contrast to vertebrates, the reappearance of fibrous collagen in H.
MMPs increased during the detected in zymographs and the overall activity of these where lesions to the ileum and colon of rats were made, Hydra 2000), regeneration in hepatic tissue repair (Haruyama et al., 1996), wound healing (Carinato et al., 1999), and regenerative events as shown by the persistent presence of fibrous collagen in the mesentery and a decrease in the thickening of the mesenteric edge. Phenanthroline works by removal of the zinc ion, while peptidyl hydroxamic acids form a ternary complex with the enzyme, binding to the active site (Moore and Spilburg, 1986b). The two hydroxamic acid competitive inhibitors show different effectiveness which might be due to their affinity for the enzyme. P-aminobenzyol Gly-Pro-D-Leu-D-Ala hydroxamate causes a smaller inhibition of regeneration than N-CBZ-Pro-Leu-Gly hydroxamate. In contrast, in experiments with human fibroblast collagenase, P-aminobenzyol Gly-Pro-D-Leu-D-Ala hydroxamate was found to be a more effective inhibitor (IC50 = 1 μM) (Odake et al., 1994) than N-CBZ-Pro-Leu-Gly hydroxamate (IC50 = 40 μM) (Moore and Spilburg, 1986a). Thus, it is possible that the most effective inhibitor of human collagenase being highly specialized to recognize the active site of the human enzyme, recognizes less well the holothurian enzyme.

After withdrawal of the inhibitor in experimental animals, the inhibited regenerative events are resumed (at least for 1,10-phenanthroline), showing that the effect is reversible. Our experiments coincide with results obtained in sea urchin where the inhibitors 1,10-phenanthroline, TIMP-2, and BB-94 have been used to determine the possible role of MMPs during development. Inhibition of MMPs after archenteron formation inhibits spiculogenesis in S. purpuratus and the effect of 1,10-phenanthroline is reversible (Roe et al., 1989; Ingersoll and Wilt, 1998). Therefore, our data show that MMP activities during regeneration are critical for the onset of the first regenerative stages.

Matrix Metalloproteinases Play a Critical Role in the Onset of Intestine Regeneration

ECM remodeling during regeneration has been associated with the proteolytic activities of the metalloproteinases (MMPs). In H. glaberrima, the observed ECM remodeling during intestine regeneration appears to be directly related to the MMP activities. In fact, the observed increase in MMP gelatinolytic activities coincides with the decrease of fibrous collagen in tissues, as seen by immunohistochemistry and Western blot analysis. Similarly, in rats, intestinal MMPs and ECM remodeling have been associated with the repair of intestinal wounds produced by surgical procedures or irradiation (Seifert et al., 1996, 1997). In experiments where lesions to the ileum and colon of rats were made, various gelatinolytic phenanthroline sensitive bands were detected in zymographs and the overall activity of these MMPs increased during the first 3 days postsurgery. Increased activities of MMPs during wound healing and regeneration have also been reported during other regenerative events, such as, regeneration of newts' limb (Yang and Bryant, 1994; Miyazaki et al., 1999; Park and Kim, 1999), Xenopus wound healing (Carinato et al., 2000), mammalian hepatic tissue repair (Haruyama et al., 2000; Knittel et al., 2000), regeneration in Hydra (Yan et al., 2000a, 2000b), regenerating skeletal muscles (Kherif et al., 1999), and human wounded respiratory epithelium (Buisson et al., 1996).

The association between ECM remodeling, MMP activities, and regenerative events is further strengthened by the in vivo MMP inhibition experiments. Inhibition of MMPs by two types of inhibitors, with different sites of action, causes a decrease in ECM remodeling and in intestinal regenerative events as shown by the persistent presence of fibrous collagen in the mesentery and a decrease in the thickening of the mesenteric edge. Phenanthroline works by removal of the zinc ion, while peptidyl hydroxamic acids form a ternary complex with the enzyme, binding to the active site (Moore and Spilburg, 1986b). The two hydroxamic acid competitive inhibitors show different effectiveness which might be due to their affinity for the enzyme. P-aminobenzyol Gly-Pro-D-Leu-D-Ala hydroxamate causes a smaller inhibition of regeneration than N-CBZ-Pro-Leu-Gly hydroxamate. In contrast, in experiments with human fibroblast collagenase, P-aminobenzyol Gly-Pro-D-Leu-D-Ala hydroxamate was found to be a more effective inhibitor (IC50 = 1 μM) (Odake et al., 1994) than N-CBZ-Pro-Leu-Gly hydroxamate (IC50 = 40 μM) (Moore and Spilburg, 1986a). Thus, it is possible that the most effective inhibitor of human collagenase being highly specialized to recognize the active site of the human enzyme, recognizes less well the holothurian enzyme.

After withdrawal of the inhibitor in experimental animals, the inhibited regenerative events are resumed (at least for 1,10-phenanthroline), showing that the effect is reversible. Our experiments coincide with results obtained in sea urchin where the inhibitors 1,10-phenanthroline, TIMP-2, and BB-94 have been used to determine the possible role of MMPs during development. Inhibition of MMPs after archenteron formation inhibits spiculogenesis in S. purpuratus and the effect of 1,10-phenanthroline is reversible (Roe et al., 1989; Ingersoll and Wilt, 1998). Therefore, our data show that MMP activities during regeneration are critical for the onset of the first regenerative stages.

Fibrosis vs Regeneration?

When skin lesions are made in adult vertebrate, they lead to scarring and fibrotic tissue (Rooney and Kumar, 1993; Martin, 1997). In contrast if the lesions are made to human or sheep fetal skin, no fibrotic tissue or scarring appears. In the fetal tissues, wound healing is characterized by an increase in interstitial collagenases, gelatinase A and stromelysin-1, and a difference in the distribution and deposition of fibrous collagens as compared with adult skins (Bullard et al., 1997; Lovvorn et al., 1999). In contrast to the regenerative capacity of fetal skin, wounded intestines in vertebrates produce scarring and fibrotic tissue in both, fetal and adult intestines (Mast et al., 1999, 1998). Different from the fibrosis formation in adult vertebrates, in the mesentery and regenerating intestine of H. glaberrima, we do not observed signs of scarring or fibrotic tissues in the wounded areas during or after regeneration.

It seems that the excessive fibrosis that impairs the
restitution of tissues in vertebrates is associated with fibrous collagen deposition and the regulation of metalloproteinases. In fact, induction of MMP activities help in reducing or preventing hepatic and myocardial fibrosis (Haruyama et al., 2000; Taniyama et al., 2000). On the other hand, MMP inhibition leads to fibrosis and scar formation in fetal skin tissues as occurs in adult skin (Lin et al., 1995; Bullard et al., 1997). Fibrosis in adult wounded skin can be significantly reduced if MMP inhibition is prevented (Roony and Kumar, 1993; Choi et al., 1996; Martin, 1997; Brahmatewari et al., 2000). Similarly, when MMP activities are inhibited during intestine regeneration in H. glaberrima, collagen matrix persists and the regenerative events are impaired. Thus, the regenerative capacity of H. glaberrima associated with ECM remodeling, in particular with collagen matrix degradation, could also be associated with the delayed deposition of fibrous collagen.

In H. glaberrima, developmental events such as wound healing, restitution of tissues, and tubular epithelial outgrowth occur during intestine regeneration. The capacity to regenerate a whole organ in holothuroids could be associated with the dynamics of ECM changes and the regulation of MMP activities. The present work, for the first time, provides evidence that extracellular matrix remodeling occurs during whole organ regeneration in H. glaberrima and that MMP activities are a critical step for the onset of intestinal regeneration.

ACKNOWLEDGMENTS

We thank Irma I. Torres for technical help in the production of monoclonal antibody Hg-fCOL and Dr. Eric P. Ingersoll for his kindly gift of antibody 4G7. We also thank Dr. Ingersoll and Dr. R. Tassava for helpful comments on the manuscript. This work was funded by NIH-M BRS (S06GM08102) and the University of Puerto Rico. We also acknowledge partial support from NIH-RCMI (RRO-3641-01).

REFERENCES

migration and layer formation is unique to speci-
nal development.

treatment and layer formation is unique to speci-

Taniyama, Y., Morishita, R., Nakagami, H., Moriguchi, A., Sa-

Received for publication July 16, 2001
Revised June 20, 2002
Accepted June 22, 2002
Published online August 19, 2002