Timing of fission in the starfish *Allostichaster capensis* (Echinodermata:Asteroidea) in laboratory

Tamara Rubilar¹, Catalina Pastor¹ & Enriqueta Díaz de Vivar²

1 Centro Nacional Patagónico, CONICET, Puerto Madryn, Chubut, Argentina; Phone: 54-2965-451024 Fax: 54-2965-451543; rubilar@cenpat.edu.ar; pastor@cenpat.edu.ar.

2 Universidad Nacional de la Patagonia San Juan Bosco, Fac. de Ciencias Naturales, Puerto Madryn, Chubut, Argentina, undiaz@cenpat.edu.ar.


Abstract: Timing of fission in the fissiparous starfish *Allostichaster capensis* under laboratory conditions is described. *A. capensis* generally splits across the disc along the fission plane during the spring, and then each half regenerates the missing arms during the rest of the year. The fission process can last eight hours. The healing process starts immediately after fission. *A. capensis* has impressive regeneration ability, including a comet, without signs of disc, regenerated two new arms. Rev. Biol. Trop. 53(Suppl. 3): 299-303. Epub 2006 Jan 30.

Key words: Echinoderms, asteroids, fission, asexual reproduction.

According to Lawrence and Herrera (2000) asexual reproduction by fission is the rarest way of reproduction in echinoderms. About 80 of the roughly six thousands extant species of echinoderms are capable of asexual reproduction by fission or arm autotomy during the benthic phase (Mladenov 1996). However, some starfish reproduce asexually by fission (Emson and Wilkie 1980, Ottesen and Lucas 1982, Achituv and Sher 1991, Mladenov and Burke 1994, Alves et al. 2002). According to Mladenov and Burke (1994) there are three families of starfish with fissiparous species: Asterinidae, Asteriidae and Solasteridae.

The genus *Allostichaster* belongs to the Asteriidae family. Within this genus, almost all species are fissiparous: *A. insignis* (Farquhar) in New Zealand (Fell 1959), *A. polyplax* (Müller and Troschel) in New Zealand and Australia (Barker et al. 1992) and *A. capensis (=inaequalis*) (Perrier, 1875) in the South Atlantic Ocean. In the Western Atlantic Ocean, *A. capensis* is distributed from Buenos Aires to Tierra del Fuego and the Falkland Islands (Islas Malvinas), from the subtidal zone to 100 m depth, usually on hard bottoms (Clark and Downey 1992).

Timing of fission in natural environments is unknown for *A. capensis*. Studies have been centered in reproductive aspects (Rubilar et al. 2005). However it is known that fission is a seasonal process that happens every spring, when seawater temperature starts to increase and day length is maximum (Rubilar et al. 2005).

*A. capensis* shows a distinctive asymmetry with two sets of arms of different sizes. This asymmetry seems to be lost in the last stages of regeneration (Rubilar 2004) although it is always possible to distinguish the plane of fission and the non-regenerative arms from the regenerative ones due to the slight difference in size and colour (Fig. 1). Before the process of fission starts in October-November (spring) (Rubilar et al. 2005), the two sets of arms are opposite to each other (Fig. 2).

The aim of this study was to describe the timing fission process of the fissiparous *Allostichaster capensis* in laboratory conditions.
Individuals were collected by scuba diving in Kaiser Bay, Golfo Nuevo (46º45’S; 65°0’W) at 10 m depth in November 2001 during the fission peak of the population (Rubilar et al. 2005). Individuals of different sizes and configuration of arms were selected (N=15), maintained six weeks in laboratory tanks with circulating water (18°C - 33.8‰ salinity) and fed once a week during the whole experiment with Aulacomya ater ater, favourite prey of A. capensis (Pucheta and Urban 1989). Fission was observed and the outcome was recorded as number individuals resulting from fission (Table 1). Organisms were classified into five sizes according to Rubilar et al. (2005): size
At the beginning of the fission process the body wall begins to lose its stiffness just before the two halves start, literally, to walk away from each other in opposite directions opening a wound across the disc. The oral tissue splits easily, taking about four hours. The two halves remain joined only by the aboral tissues and continue moving forward until the tissue breaks completely. The process can last up to around eight hours.

After the fission, the two new individuals are usually immobile while the healing of the wound is taking place. The body wall contracts to seal the wound. After a few weeks the tips of the new arms are visible (Fig. 3, 4).

The process of fission has been described for others species: *Allostichaster polyplax*, *Coscinasterias calamaria* and *Stephanasterias albula* (Emson 1978, Crump and Barker 1985, Mladenov et al. 1986). According to Mladenov et al. (1986) there appear to be three different patterns of fission in starfish depending on the number of arms. Nevertheless only one pattern was found in *A. capensis* as Emson (1978) found in *A. polyplax*. Even individuals with four and five arms showed this pattern in *A. capensis*. However, one individual with five arms split into three new individuals, two with two arms and one comet. The comet had no disc. However, it sealed the wound and started to regenerate two new arms. By the end of the experiment the two new arms had ca 1cm (Fig. 5).

*A. capensis* shows an amazing capacity for regeneration. Individuals with all kinds of configurations of arms and sizes underwent fission and regenerated (Rubilar et al. 2005). Even a comet without a disc is able to generate new arms. This deviant reproduction can be an adaptation to stress (Lawrence and Herrera 2000). Mladenov and Burke (1994) found in

<table>
<thead>
<tr>
<th>Size of parent individuals</th>
<th>Resulting individuals</th>
<th>Number of arms of individual n°1</th>
<th>Number of arms of individual n°2</th>
<th>Number of arms of individual n°3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>1</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
Coscinasterias calamaria that a poorer diet reduces the energy channeled into sexual reproduction and may act as a further stimulus to fission. Apparently A. capensis has insufficient food availability in Bahía Kaiser (Rubilar 2004). However, the proximate factors that induce fission in starfish are still poorly understood (Mladenov and Burke 1994). Discussion has focused on exogenous and endogenous stimuli.

Fig. 3. Allostichaster capensis. Individuals recently split. Note wound sealing by contraction of the body wall. Scale bars: white 1 cm, black 1 cm.

Fig. 3. Allostichaster capensis. Individuos recientemente separados. Nótese el cierre de la herida por contracción de las paredes del cuerpo. Barra de escala: blanca 1 cm, negra 1 cm.

Coscinasterias calamaria that a poorer diet reduces the energy channeled into sexual reproduction and may act as a further stimulus to fission. Apparently A. capensis has insufficient food availability in Bahía Kaiser (Rubilar 2004). However, the proximate factors that induce fission in starfish are still poorly understood (Mladenov and Burke 1994). Discussion has focused on exogenous and endogenous stimuli.

Fig. 4. Allostichaster capensis. Regenerating individuals. a) Individual with two non-regenerative arms producing five new arms. b) Individual with three non-regenerative arms is regenerating three new arms. Scale bars: white 1 cm, black 1 cm.

Fig. 4. Allostichaster capensis. Individuos regenerándose. a) individuo con dos brazos no regenerados produciendo cinco brazos nuevos. b) Individuo con tres brazos no regenerados está regenerando tres nuevos brazos. Barra de escala: blanca 1 cm, negra 1 cm.

Fig. 5. Allostichaster capensis. Comet six weeks after fission. Scale bars: white 1 cm, black 1 cm.

Fig. 5. Allostichaster capensis. Cometa de seis semanas luego de la fisión. Barra de escala: blanca 1 cm, negra 1 cm.
It seems possible that fission may be an important way of reproduction of some species and genera. The fact that the genus *Allostichaster* and the genus *Coscinasterias* show a seasonal pattern of fission supports this idea.

ACKNOWLEDGMENTS

We thank Francisco Fernandez for collecting samples. This report is part of Project N°449 “Reproductive Cycle of Asteroidea in Golfo Nuevo”, Universidad Nacional de la Patagonia “San Juan Bosco”.

REFERENCES


